
A Proof of Uncertainty Principle

A.1 Setting Up The Transform

Any physical state will have a probability distribution Φ(p)&ψ(x) in momentum and position
spcae, respectively. Consider collection of eigen function

{
eip

x
~
}

where p in the vector space R

p̂eip
x
~ = −i~ d

dxe
ip x~

= peip
x
~

Realizing this uncountable collection of function forms a complete basis set. If one is interested in
representing the same state in position variable x, we need to sum up all of these function with
probability density Φ(p)

ψ(x) =
1√
2π~

∫
Φ(p)eip

x
~ dp→ position distribution of the same state

We will explain constant later. At this point, consider how to obtain Φ(p) from ψ(x). This can be
achieved by multiplying ψ(x) by e−ip

′ x
~ for some p’ followed by integration w.r.t. x.

∫
ψ(x)e−ip

′ x
~ dx

=
1√
2π~

∫ ∫
Φ(p)eip

x
~ e−ip

′ x
~ dpdx

=
1√
2π~

∫
Φ(p)

∫
ei(p−p

′) x~ dxdp

Using Lemma

=
1√
2π~

∫
Φ(p)δ(p− p′)2π~dp

=
1√
2π~

2π~Φ(p′)

By replace p’ with p

Φ(p) =
1√
2π~

∫
ψ(x)e−ip

x
~ dx

Note that we choose the constant ( 1√
2π~ ) to be symmetric going from Φ(p) to ψ(x), & from ψ(x)

to Φ(p).
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A.2 Lemma: 2π~ δ(p− p′)=
∫
ei(p−p

′)x~ dx

Again we use the same transform definition

ψ(x) =
1√
2π~

∫
Φ(p)eip

x
~ dp

Φ(p) =
1√
2π~

∫
ψ(x)e−ip

x
~ dx

denote ψ̂(x) = Φ(p)

then

f̂(p′) =
1√
2π~

∫
f(x)e−ip

′ x
~ dx

=
1√
2π~

∫
1√
2π~

∫
f̂(p)eip

x
~ dpe−ip

′ x
~ dx

=

∫
f̂(p)

(
1

2π~

∫
ei(p−p

′) x~ dx

)
dp

By the definition of the delta function f(p′) =
∫
δ(p− p′)f(p)dp we obtain the desired result

δ(p− p′) =
1

2π~

∫
ei(p−p

′) x~ dx
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A.3 Plancherel Theorem for Position and Momentum Pair

So far we have defined transform

ψ(x) =
1√
2π~

∫
Φ(p)eip

x
~ dp

Φ(p) =
1√
2π~

∫
ψ(x)e−ip

x
~ dx

denote ψ̂(x) = Φ(p)

Let f(x) & g(x) be the probability distribution of x
Let us consider the inner product

∫
f(x)g∗(x)dx

using the transform defined above

=

∫
f(x)

1√
2π~

∫ (
ĝ(p)eip

x
~
)∗
dpdx

=

∫
f(x)

1√
2π~

∫
ĝ∗(p)e−ip

x
~ dpdx

=

∫
ĝ∗(p)

1√
2π~

∫
f(x)e−ip

x
~ dxdp

=

∫
ĝ∗(p)f̂(p)dp

Setting f = g at the beggining∫
|f(x)|2 dx =

∫ ∣∣∣f̂(p)
∣∣∣2 dp
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A.4 Uncertainty Principle: Distribution Centered at Zero

Consider the case where both Φ(p) & ψ(x) are centered at zero.

1 =

∫
|ψ(x)|2 dx

Perform integration by parts by setting

u = |ψ(x)|2 = ψ∗(x)ψ(x)

du = ψ∗
′
(x)ψ(x) + ψ∗(x)ψ

′
(x) = 2Re(ψ∗

′
(x)ψ(x))

v = x, dv = dx

= −2Re

∫
xψ∗

′
(x)ψ(x)dx

≤ 2

∣∣∣∣∫ xψ∗
′
(x)ψ(x)dx

∣∣∣∣
By Cauchy-Schwarz inequality

≤ 2

(∫
|xψ(x)|2 dx

) 1
2
(∫
|ψ′(x)|2 dx

) 1
2

= 2

(∫
x2 |ψ(x)|2 dx

) 1
2
(∫
|ψ′(x)|2 dx

) 1
2

= 2σx

(∫
|ψ′(x)|2 dx

) 1
2

→ eq. A1

Also,

ψ′(x) =
d

dx
ψ(x) =

1√
2π~

∫
Φ(p)

d

dx
eip

x
~ dx

=
1√
2π~

∫ (
ip

~
Φ(p)

)
eip

x
~ dp

By applying the Plancherel Theorem

∫
|f(t)|2 dt =

∫ ∣∣∣f̂(ω)
∣∣∣2 dω

(∫
|ψ′(x)|2 dx

) 1
2

=

(∫ ∣∣∣∣( ip~ Φ(p)

)∣∣∣∣2 dp
) 1

2

=
1

~

(∫
p2 |(Φ(p))|2 dp

) 1
2

=
1

~
σp
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from Eq A1

1 ≤ 2σx

(∫
|ψ′(x)|2 dx

) 1
2

=
2

~
σxσp

Hence

~
2
≤ σxσp

A.5 Uncertainty Principle: Distribution Centered at Nonzero

Now consider ψ(x) & Φ(p) which may have nonzero average value

Let Ψ(x) = e−i
mp
~ xψ(x)

Because |Ψ(x)| = |ψ(x)|

1 =

∫
|Ψ(x)|2 dx

Perform integration by parts by setting

u = |Ψ(x)|2 = Ψ∗(x)Ψ(x)

du = Ψ∗
′
(x)Ψ(x) + Ψ∗(x)Ψ

′
(x) = 2Re(Ψ∗

′
(x)Ψ(x))

v = x− µx, dv = dx

= −2Re

∫
(x− µx) |Ψ(x)|2 dx

≤ 2

(∫ ∣∣(x− µx)2Ψ(x)
∣∣2 dx) 1

2
(∫
|Ψ′(x)|2 dx

) 1
2

By same approach: Applying the Plancherel Theorem on last parentheses

≤ 2σx

(∫ ∣∣∣∣ i(p− µp)~
Ψ̂′(x)

∣∣∣∣2 dx
) 1

2

=
2σxσp

~

Therefore
~
2
≤ σxσp as desired
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A.6 Uncertainty Principle Proof using Commutator

By the definition of Variance,

σ2
A =

∫
Ψ∗(x)

(
Â− 〈A〉

)2

Ψ(x)dx

HW: It is good exercise to get to the next line

=

∫
Ψ∗(x)Â2Ψ(x)dx− 〈A〉2

Similarly, you can get σ2
B =

∫
Ψ∗(x)B̂2Ψ(x)dx− 〈B〉2

Let f(x) =
((
Â− 〈A〉

)
Ψ(x)

)
and g(x) =

((
B̂ − 〈B〉

)
Ψ(x)

)
σ2
A =

∫ ((
Â− 〈A〉

)
Ψ(x)

)((
Â− 〈A〉

)
Ψ(x)

)∗
dx =

∫
f(x)f∗(x)dx in R

σ2
B =

∫ ((
B̂ − 〈B〉

)
Ψ(x)

)((
B̂ − 〈B〉

)
Ψ(x)

)∗
dx =

∫
g(x)g∗(x)dx in R

Let us consider quantity z = x+ yi =

∫
f(x)g∗(x)dx which is not necessary in R but in C

Then, the complex conjugate of z is z∗ = x− yi =

∫
g(x)f∗(x)dx

z =

∫ ((
Â− 〈A〉

)
Ψ(x)

)((
B̂ − 〈B〉

)
Ψ(x)

)∗
dx =

∫
Ψ∗(x)ÂB̂Ψ(x)dx− 〈A〉 〈B〉

Similarly, z∗ =

∫
Ψ∗(x)B̂ÂΨ(x)dx− 〈A〉 〈B〉

Since |z|2 = x2 + y2where x and y are in R. This means that z2 ≥ y2 =

(
z − z∗

2i

)2

Therefore, |z|2 =≥ y2 =

∫ Ψ∗(x)
(
ÂB̂ − B̂Â

)
Ψ(x)dx

2i

2

=

∫ Ψ∗(x)
[
Â, B̂

]
Ψ(x)dx

2i

2

Using Cauchy-Schwarz inequality,

∫
f(x)f∗(x)dx

∫
g(x)g∗(x)dx ≥

∣∣∣∣∫ f(x)g∗(x)dx

∣∣∣∣2
σ2
Aσ

2
B ≥ z2 ≥ y2

for the case the operator does not commute like [p̂x, x̂] = p̂xx̂− x̂p̂x = i~

Above inequality will yeild
~
2
≤ σxσp as desired. //
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A.7 Average Volume of a State

Now that we have studied uncertainty principle, we are going to think about the average volume
occupied by a single state. The volume of single state (h3) is used in part II of this textbook and
it is fundamental to statistical mechanics. Although average volume is sometimes stated as a
direct consequence of uncertinty principle, average volume is slightly larger than the minimum
volume [cube of the uncertainty bound ((~/2)

3
)]. We will derive the volume from transform

defined in previous page.

ψ(x) =
1√
2π~

∫
Φ(p)eip

x
~ dp

Φ(p) =
1√
2π~

∫
ψ(x)e−ip

x
~ dx

Consider 1-D problem. Since we want to avoid a complete specification of p or x, we define
converging sequence of function δ̃ which approaches to δ. We assume ψ is sufficiently smooth.
Keep in mind that we can not specify p and x simalteniously. However, we can restrict the
domain of x (Ω) so that it represent the single state. Consider ψo(x; p) which is identical to ψ
within the single state region Ωx × Ωp and zero everywhere else. Let momentum p̃′ represent the
value approximately close to some momentum p′ within this region.

∫
Ωx

ψo(x; p̃′)e−ip̃
′ x
~ dx =

∫
Ωx

(
1√
2π~

∫
Ωp

Φo(p)eip
x
~ δ̃ (p− p′) dp

)
e−ip̃

′ x
~ dx

=
1√
2π~

∫
Ωx

Φo(p̃′)eip̃
′ x
~ e−ip̃

′ x
~ dx

=
1

2π~

∫
Ωx

(∫
Ωx

ψo(x; p̃′)e−ip̃
′ x
~ dx

)
dx

=
1

2π~

(∫
Ωx

ψo(x; p̃′)e−ip̃
′ x
~ dx

)
∆x

Rearrange the equation to obtain,

2π~ = h = ∆x in 1-D

Average volume of a single state in 3-D (h3) is simply a cube of the 1-D result.//
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A.8 Euler Equation

We have shown that S and V is extensive variables and U is extensive function of these variables.
More specifically, all of these are additive (linear relation to size). For this reason, it is obvious
that following relation holds

U(aS, aV ) = aU(S, V )

This equation can interprit as ”if the new system has twice the volume (a=2) and entropy per
volume is unchanged, internal energy is twice as large as original system.” Then, it follwos that

dU(aS, aV )

da
= U(S, V )

=

(
∂U(aS, aV )

∂(aS)

)
V

d (aS)

da
+

(
∂U(aS, aV )

∂(aV )

)
S

d (aV )

da

=

(
∂U(aS, aV )

∂(aS)

)
V

S +

(
∂U(aS, aV )

∂(aV )

)
S

V

by setting a=1

=

(
∂U(S, V )

∂S

)
V

S +

(
∂U(S, V )

∂V

)
S

V

from 1st law

dU(S, T ) =

(
∂U(S, V )

∂S

)
V

dS +

(
∂U(S, V )

∂V

)
S

dV = δq + δw = Tds− Pdv

first and second partial derivatives are T and −P , respectively

U = TS − PV

It folllows from the argument in the text, U is a state function. This argument can be repeated
for U(S, V,N).
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A.9 Lagrange Multipliers and Chemical Potential

A.9.1 Single component system

At the beginning of this semester, we used Lagrange multiplier to obtain Boltzmann thermal
distribution with 2 constraints:

δNi =
∑
i

δNi = 0 · · · 1

δNi =
∑
i

δNiεi = 0 · · · 2

When we try to maximize ln Ω

δL =
∑
i

(1 + lnNi + α+ βεi)︸ ︷︷ ︸
=0

δNiy
constraint 1 const 2

Ni = e−(1+α)e−βεi

= e−1e−β(εi+α
β )y

α
β = µ

↙
chemical potential

e−1 is going to be cancelled in Z ⇒ can be eliminated. From discussion in the text, β = 1/kBT .
Since alpha is a pure number, the chemical potential has a unit of energy as expected.
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A.9.2 Multi-component system

Consider system composed of two chemical components. The constraint we have for such system is

δN1 =
∑
i

δN1i = 0 · · · 1∑
i

N2i = N2 · · · 2∑
i

N1iεi = E1 · · · 3∑
j

N2jεj = E2 · · · 4

consider Ω

Ω =
N1

N10N11N12 · · ·N1r−1

N2

N20N21N22 · · ·N2s−1

Since constant term disappear in the next step, we can ignore constants

ln Ω = −
∑
i

N1i lnN1i −
∑
j

N2j lnN2j

δ ln Ω = −
∑
i

δN1i lnN1i −
∑
i

δN1i −
∑
j

δN2j lnN2j −
∑
j

δN2j

Following the similar step as in single component, we introduce the Lagrange multiplier

δL =
∑
i

(1 + lnNi + α1 + β1εi)δNi = 0 =
∑
j

(1 + lnNj + α2 + β2εj)δNj

Since LHS and RHS is independent, inside the parentheses must be zero.

(1 + lnNi + α1 + β1εi) = 0 = −(1 + lnNj + α2 + β2εj)

Since each components are thermal equilibrium with thermal bath, namely β1 = β = 1/kBT = β2,

lnNiNj = −2− α1 − α2 − β(εi + εj)

Then,

N1iN2j = e−2−α1−α2−β(εi+εj) = e−2e−β([εi+α1/β]+[εj+α2/β])

N1N2 = e−2
∑
ij

e−β(εi+εj+α1/β+α2/β)

P (i, j) =
N1iN2j

N1N2
=

e−β([εi+α1/β]+[εj+α2/β])∑
ij

e−β([εi+α1/β]+[εj+α2/β])

and chemical potentials for each components are reltate to Lagrange multipliers.

243


